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ABSTRACT
In this paper we presents the notion of key-rotatable and
security-updatable homomorphic encryption (KR-SU-HE)
scheme, which is a class of public-key homomorphic encryp-
tion in which the keys and the security of any ciphertext
can be rotated and updated while still keeping the under-
lying plaintext intact and unrevealed. We formalise syntax
and security notions for KR-SU-HE schemes and then build
a concrete scheme based on the Learning With Errors as-
sumption. We then perform testing implementation to show
that our proposed scheme is efficiently practical.

Keywords
Homomorphic encryption, Learning With Errors, key rota-
tion, security update.

1. INTRODUCTION

1.1 Background
Key rotation is an important practice for cryptosystems.

Succinctly, it is the change of an old key by a new one, while
keeping the plaintexts intact.

Key rotation is specified in several security standards.
Indeed, on the industrial side, it is required by Payment
Card Industry Data Security Standard [22], and is consid-
ered as an obligation by Open Web Application Security
Project [21], concretely specifying that

“key rotation is a must as all good keys do come to an end
either through expiration or revocation. So a developer will

have to deal with rotating keys at some point – better to
have a system in place now rather than scrambling later.”

On the federal side, it is recommended by NIST [19] via
the concept of cryptoperiods of keys, namely the time spans

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCC’17, April 2, 2017, Abu Dhabi, United Arab Emirates.
c© 2017 ACM. ISBN 978-1-4503-4970-3/17/04. . . $15.00.

DOI: http://dx.doi.org/10.1145/3055259.3055260

during which they are used. As suggested in [19], cryptoperi-
ods are in the order of 1-2 years depending on the considered
primitives. Therefore, after a few years, the old key should
be changed by a new one.

In this paper, we focus on the problem of key rotation
and its close variant called security update over public key
homomorphic encryption, as it is particularly relevant to
secure cloud computing.

1.2 Problem formalisation and naïve solution
We first formalise the problem of key rotation and security

update, and then present a näıve solution.

Problem formalisation. Let us consider a public key ho-
momorphic encryption scheme. Suppose encryption under
(pk1, sk1) has n1-bit security, while that under (pk2, sk2) has
n2-bit security. The question is how to turn an n1-bit secu-
rity ciphertext into a ciphertext having n2-bit security while
keeping the underlying plaintext the same. Moreover, ho-
momorphic operations such as additions and multiplications
can be still performed after the transformation.

Two possibly interesting cases of the above problem are
as follows:

• Key rotation: when n1 = n2, the above is the known
problem in practice as the process of re-keying en-
crypted data from an old key to a new one.

• Security update: when n1 < n2, the problem can
be described succinctly as turning security-weakened
ciphertexts and the related secret key into ones with
higher security assurance.

The näıve solution: decrypt-then-encrypt. It is possi-
ble to solve the problem by the decrypt-then-encrypt method.
Specifically, use the secret key sk1 related to pk1 to decrypt
the old ciphertext, and then encrypt the obtained plaintext
under pk2. This approach has potential shortcomings: (1)
the plaintext is recovered, and (2) the secret sk1 must be
used for decryption. Concretely, if the task of key rotation
is done by an outsourced server in cloud computing, then
either by (1) or (2), the server learns the data or the secret
key.

Our goal. In this paper, we are interested in developing
an efficient solution without the above shortcomings of the
näıve solution.
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Table 1: Usages of the dimension switching technique.
Dimension switching Exploited in Main purpose

(high → low) n2 < n1 [9, 11] efficiency in FHE
(equal) n2 = n1 [1, 12,20] PRE, obfuscation

(equal, low → high) n2 ≥ n1 this paper key rotation, security update

2. OUR CONTRIBUTIONS
We propose a primitive called key-rotatable and security-

updatable homomorphic encryption (KR-SU-HE) and for-
malise its security notions. We then construct a concrete
scheme based on the Learning With Errors (LWE) assump-
tion. We finally show that our scheme is practical by imple-
mentation. Details are given below.

Conceptual proposal. We develop a solution to the above
problem where, given public/secret key pair (pk1, sk1) of n1-
bit security and (pk2, sk2) of n2-bit security,

• An outsourced server is given an update key ukn1→n2 ,
which is computed from sk1 and sk2, and yet ukn1→n2

is computationally random from the server’s view.

• The server uses ukn1→n2 to update ciphertexts corre-
sponding to (pk1, sk1) into ciphertexts corresponding
to (pk2, sk2), while underlying plaintexts are kept the
same.

• Only sk2 is needed in decryption of updated cipher-
texts.

We call a homomorphic encryption scheme having above
transformation key-rotatable and security-updatable homo-
morphic encryption. This type of homomorphic encryption
needs new security definitions, because we want to ensure
that transformed ciphertexts not only can be decrypted by
sk2, but also have n2-bit security. We therefore formalise
the notion of d-CPA security, where d is an integer spec-
ifying the number of updates so far. For example, if one
goes from 80- to 128- then to 256-bit security, then d = 2
(updates of security). Also, for key rotation purpose, if one
periodically switches 10 times among keys of identical bit
security, then d = 10.

A concrete scheme. We then build a concrete and efficient
KR-SU-HE scheme based on the LWE assumption. The tool
for our construction is described below.

On a bird’s-eye view, increasing security is possible via an
enlargement of dimension in the LWE assumption, where
higher dimension ensures more security. The switch is ex-
actly the dimension-switching technique original used in fully
homomorphic encryption (FHE) [11]. Historically, the paper
[11] only considered dimension-reduction, namely n2 < n1 in
our notation, for efficiency issues in FHE. Then subsequent
paper [9], while notified that the technique works for ar-
bitrary dimensions n1 and n2, only made use of the case
n2 < n1 as in [11]. The case n1 = n2 is considered in [1, 20]
for proxy re-encryption and in [12] for obfuscation. To our
best knowledge, we are the first to exploit the case n1 < n2

for security enhancement.
Dimension switching however provides us only with cor-

rectness in dimension n2, not yet security in that dimension.
We solve that issue by a re-randomisation in the update pro-
cess. Details are given in Section 4.

Testing implementation. Taking a concrete parameter
set, we implement our proposed scheme to show that it is
efficient. Details are given in Section 4.3, including the tim-
ings for all algorithms in our proposed scheme.

3. PRELIMINARIES
Let Z(0,s) be the discrete Gaussian distribution over the

integers Z, with mean 0 and deviation s > 0. The mark
g← is for “sampling at random from a discrete Gaussian”

set, so that x
g← Z(0,s) means x appears with probability

proportional to exp(−πx2/s2). Below,
$← means “sampling

uniformly at random”. Also, Zq ⊂ (−q/2, q/2] is the set of
integers centered modulus q.

3.1 Learning with Errors (LWE)
Related to the decision LWE assumption LWE(n, s, q),

where n, s, q depend on the security parameter, consider ma-

trix A
$← Zm×nq , vectors r

$← Zm×1
q , x

g← Zn×1
(0,s), e

g← Zm×1
(0,s) .

Then vector Ax + e is computed over Zq. Define the fol-
lowing advantage of a poly-time probabilistic algorithm D:

Adv
LWE(n,s,q)
D (λ)

=
∣∣∣Pr[D(A,Ax+ e)→ 1]− Pr[D(A, r)→ 1]

∣∣∣.
The LWE assumption asserts that Adv

LWE(n,s,q)
D (λ) is neg-

ligible as a function of λ. Also note that, originally, x is
chosen randomly from Zn×1

q in [23]. However, as showed

in [4, 18], one can take x
g← Zn×1

(0,s) without weakening the

assumption as we do here.

LWE dimension and security level. The length of se-
cret vector x, namely n, is denoted as the LWE dimension.
For the same deviation s and modulus q, the hardness of
LWE assumption increases with its dimension n as showed
in [10], which is the important fact we will exploit in design-
ing our KR-SU-HE schemes. Therefore, “LWE dimension”
and “security level” are sometimes used interchangeably in
this manuscript.

3.2 Homomorphic encryption, key rotation, se-
curity update

Definition 1 (PHE). Public key homomorphic encryp-
tion (PHE) schemes consist of the following (possibly prob-
abilistic) poly-time algorithms.

• ParamGen(1λ) → pp: λ is the security parameter and
the public parameter pp is implicitly fed in following
algorithms.

• KeyGen(1λ) → (pk, sk): pk is the public key, while sk
is the secret key.

• Enc(pk,m)→ c: probabilistic encryption algorithm pro-
duces c, the ciphertext of message m.
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• Dec(sk, c)→ m: decryption algorithm returns message
m encrypted in c.

• Add(c, c′), AddM(c, c′): In Add, for ciphertexts c and
c′, the output is the encryption of plaintext addition
cadd. Similarly, AddM adds two ciphertexts each was
obtained by one multiplication (using Mul below).

• Mul(pp, c, c′): for ciphertexts c and c′, the output is the
encryption of plaintext multiplication cmul.

• DecA(sk, cadd): decrypting cadd to obtain an addition
of plaintexts.

• DecM(sk, cmul): decrypting cmul to obtain a multipli-
cation of plaintexts.

Definition 2 (KR-SU-HE). A scheme as in Defini-
tion 1 is called a key-rotatable and security-updatable ho-
momorphic encryption scheme if it has additional algorithms
as follows.

• UKGen(pp, pk1, sk1, pk2, sk2): generating an update key
uk1→2 from the public/secret key pairs (pk1, sk1) (old)
and (pk2, sk2) (new).

• Update(pp, c, uk1→2, pk2): outputting a new ciphertext
cnew from an old c.

with the following requirements:

a) Correctness of updated ciphertexts: succinctly,

Dec(sk2, cnew) = Dec(sk1, c)

with overwhelming probability, namely the correctness is not
affected by key rotation and security update.

b) Homomorphisms: are preserved as long as the cipher-
texts in operations are under the same public key (either pk1
or pk2), regardless of whether they are (1) directly formed
by Enc, or (2) indirectly formed by Update.

Following security notion defines d-CPA security, namely
the CPA security of ciphertexts obtained via 1 time of orig-
inal encryption and subsequent d key rotations or security
updates.

Definition 3 (d-CPA security). With reference to a
KR-SU-HE scheme as in Definition 2, consider the following
game between an adversary A and a challenger:

1. Setup: the challenger creates following keys (pk0, sk0),
(pk1, sk1), . . . , (pkd−1, skd−1) of security levels n0, . . . ,
nd−1 respectively, and (pkd, skd) of level nd. Then
(ski, pki) (∀ 0 ≤ i ≤ d − 1) and pkd are given to A.
The key skd is kept secret to A.

2. Update key queries: A can ask for many update
keys from any (pki, ski) for 0 ≤ i ≤ d−1 to (pkd, skd)

1.
To each query, the challenger returns a freshly gener-
ated update key ukni→nd .

3. Challenge: A chooses

• two plaintexts m0,m1 of the same length, and

1A itself can generate update keys between lower dimensions
ukni→nj for 0 ≤ i, j ≤ d− 1 since it has ski and skj .

• a series of update keys uk∗n0→n1
,. . . , uk∗nd−1→nd

of predetermined sizes.

A then submits them to the challenger, who in turn
takes b ∈ {0, 1} randomly, computes C∗0 as the en-
cryption of mb under pk0, namely C∗0 = Enc(pk0,mb).
Then applying the update algorithm as follows:

C∗1 = Update(C∗0 , uk
∗
n0→n1

, pk1),

...

C∗d = Update(C∗d−1, uk
∗
nd−1→nd

, pkd).

The final ciphertext C∗d is returned to A.

4. Additional update key queries: the same as step
2.

5. Finally, A returns a bit b′ as a guess of the hidden bit
b.

A KR-SU-HE scheme is d-CPA-secure if the advantage

Advd−cpa
A (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
is negligible as a function of λ.

Some comments on Definition 3 are in order. First, 0-CPA
is exactly the standard CPA security under pk0, since there
is no key rotation or update. The fact that A gets secret
keys sk0, . . . , skd−1 captures the extreme case in which keys
in security levels n0, . . . , nd−1 are insecure. This is generous
to A since in practice we expect new keys are generated
and ciphertexts are updated before old keys are considered
insecure. Second, the fact A gets update keys in steps 2,
4 and can challenge with malformed update keys at step
3 envisages that the keys are publicly transmitted to and
permanently put in outsourced servers and hence may be
modified. This differs from security notions for both public
key encryption (PKE) and proxy re-encryption (PRE) in
which the adversary only chooses two messages.

Certainly we need also care about the CPA security of
ciphertexts directly encrypted under the new public key,
which is captured by following notion.

Definition 4 (CPA security). With respect to a KR-
SU-HE scheme as in Definition 2, consider the following
game between an adversary A and a challenger:

1. Setup: the same as in Definition 3.

2. Update key queries: the same as in Definition 3.

3. Challenge: A chooses two plaintexts m0,m1 of the
same length, then submits them to the challenger, who
in turn takes b ∈ {0, 1} randomly and computes C∗ =
Enc(pkd,mb). The challenge ciphertext C∗ is returned
to A.

4. Additional update key queries: the same as in
Definition 3.

A KR-SU-HE scheme is CPA-secure if

Advcpa
A (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
is negligible in λ.

37



3.3 Secure cloud computing with key rotation
and security update

Using KR-SU-HE schemes, a client can store encrypted
data on cloud server for computations using homomorphic
properties. Moreover, the client can do key rotation for all
ciphertexts, namely replacing an old key pair (pk1, sk1) by
a new one (pk2, sk2) by:

1. The client holding (pk1, sk1) generates the new key
pair (pk2, sk2), and then creates uk1→2 via executing

UKGen(pp, pk1, sk1, pk2, sk2).

The client sends uk1→2 to the cloud server. Note
uk1→2 is pseudorandom, and hence reveals no infor-
mation to the cloud server.

2. The cloud server receives uk1→2 and runs the algo-
rithm Update(pp, c, uk1→2, pk2) to rotate the key pk1
encrypting c to pk2. The output is cnew. This step
is repeated for all old ciphertexts c under pk1 in the
storage.

Plain data is never recovered in the above steps, which helps
preventing any data breach.

4. OUR PROPOSED KR-SU-HE SCHEME
In this section we present and analyse our concrete scheme.

Details are below.

Public key homomorphic encryption part. This part
is a close variant of the public key encryption scheme in [16].

• ParamGen(1λ): Fix q = q(λ) ∈ Z+ and l ∈ Z+. Fix

p ∈ Z+ such that gcd(p, q) = 1. Return pp = (q, l, p).

• KeyGen(1λ, pp): Take s = s(λ, pp) ∈ R+ and n =

n(λ, pp) ∈ Z+. Take R,S
g← Zn×l(0,s), and A

$← Zn×nq .

Compute the matrix

P = pR−AS ∈ Zn×lq .

Return the public key pk = (A,P, n, s) and the secret
key sk = S.

• Enc(pk,m ∈ Z1×l
p ): Pick vectors of noises e1,e2

g← Z1×n
(0,s),

and e3
g← Z1×l

(0,s). Compute

c1 = e1A+ pe2 ∈ Z1×n
q ,

c2 = e1P + pe3 +m ∈ Z1×l
q .

Return c = (c1, c2) ∈ Z1×(n+l)
q .

• Dec(S, c = (c1, c2)): Compute m = c1S + c2 ∈ Z1×l
q

and m = m mod p. Return m.

• Add(c, c′): Return c+ c′ ∈ Z1×(n+l)
q .

• Mul(pp, pk, c, c′): Return

cmul = cTc′ ∈ Z(n+l)×(n+l)
q

where cT ∈ Z(n+l)×1
q is the transpose of c ∈ Z1×(n+l)

q .

• AddM(cmul, c
′
mul): Return cmul+c

′
mul ∈ Z(n+l)×(n+l)

q

• DecA(sk, cadd): identical to Dec

random, A0 = �p�1A 2 Zn⇥n
q is also random. Therefore,

P 0 = p�1P 2 Zn⇥l
q is random under the LWE assumption

which in turn means P is random as claimed.
Second, the challenge ciphertext c⇤ = e1[A|P ] +

p[e2|e3] + [0|mb] is turned to random. This relies on the
LWE assumption with secret vector e1. Here, the condition
gcd(p, q) = 1 is also necessary as above. Thus b is perfectly
hidden after this change. The factor l + 1 is due to l uses
of LWE in changing P and 1 use in changing c⇤.

3.3. Key rotation and security update

Suppose encryption under (pk1, sk1) has security of
level n1, while that under (pk2, sk2) has level n2. (Con-
cretely, in our scheme, n1 and n2 correspond to LWE dimen-
sions, which are related to dimensions in lattice problems.)
The question is how to turn old ciphertexts of security level
n1 into new ones having level n2 while keeping the underly-
ing plaintext the same. Moreover, homomorphic operations
can be still performed after the transformation.

Two possibly interesting cases are as follows:

• (Key rotation) When n1 = n2, the above is the
well-known key rotation problem (applied to public-
key homomorphic encryption), which is often raised
in practice as the process of re-keying encrypted data
from an old key to a new one.

• (Security update) When n1 < n2, the problem can
be described succinctly as turning security-weakened
ciphertexts and the related secret key into ones with
higher security assurance.

Indeed, on the federal side, it is recommended by NIST
[8] via the concept of cryptoperiods of keys, namely the time
spans during which they are used. As suggested in [8, Table
1], cryptoperiods are in the order of 1-2 years depending
on the considered primitives. On the industrial side, it is
required by [9, Requirement 3.6.4], and is recommended by
[10], specifying that “key rotation is a must as all good keys
do come to an end either through expiration or revocation.
So a developer will have to deal with rotating keys at some
point – better to have a system in place now rather than
scrambling later.” The same arguments apply to the case
n1 < n2 as attacks advance.

How to do key rotation and security update. For these
purposes, we add two additional algorithms UKGen (gener-
ating the update key) and Update (doing the key rotation,
or security update over ciphertexts), according to Defini-
tion 3. The algorithm UKGen takes two pairs (pk1, sk1)
and (pk2, sk2) and returns a key ukn1!n2

. The algorithm
Update uses that ukn1!n2

to turn a ciphertext c under
pk1 to a ciphertext c0 decryptable under sk2. The details
are depicted in Figure 2 in which we need the functions
Power2(·) and Bits(·) explained as follows. Let v 2 Zn

q and
 = dlog2 qe, then there are bit vectors vi 2 {0, 1}n such
that v =

P�1
i=0 2ivi. Define

Bits(v) = [v0| · · · |v�1] 2 {0, 1}1⇥n.

TABLE 1. USAGES OF THE DIMENSION SWITCHING TECHNIQUE.

Dimension switching Exploited in Main purpose
(high ! low) n2 < n1 [22], [23] efficiency in FHE

(equal) n2 = n1 [24], [25] PRE, obfuscation
(equal, low ! high) n2 � n1 this manuscript key rotation, security update

Key rotation and security update
UKGen(pp, pk1, sk1, pk2, sk2):

Let pki = (Ai, Pi, ni, si). Let ski = Si (i = 1, 2)

Let  = dlog2 qe. Take X
$ Zn1⇥n2

q , E
g Zn1⇥l

(0,s2)

Y = �XS2 + pE + Power2(S1) 2 Zn1⇥l
q

Return ukn1!n2
= (X, Y )

Update(pp, c, ukn1!n2
, pk2):

Let c = (c1, c2) 2 Z1⇥n1
q ⇥ Z1⇥l

q

Let pk2 = (A2, P2, n2, s2), ukn1!n2 = (X, Y )
Take f1, f2

g Z1⇥n2

(0,s2)
, f3

g Z1⇥l
(0,s2)

E0 = f1[A2|P2] + p[f2|f3] 2 Z1⇥(n2+l)
q

F = [Bits(c1)X|Bits(c1)Y + c2] 2 Z1⇥(n2+l)
q

Return c0 = E0 + F 2 Z1⇥(n2+l)
q

(In E0 and F , [· · · | · · · ] is for matrix concatenation.)

Figure 2. Algorithms for key rotation and security update.

Let W = [W1| · · · |Wl] 2 Zn⇥l
q where Wi are columns.

Then

Power2(W ) =

2
664

W1 · · · Wl

2W1 · · · 2Wl

...
...

2�1W1 · · · 2�1Wl

3
775 2 Zn⇥l

q .

It is easy to check that

Bits(v)Power2(W ) = vW 2 Z1⇥l
q .

Intuitively, Bits(·) is used in Update to limit the noise
increase, while Power2(·) is put in UKGen to ensure cor-
rectness of updated ciphertexts using above equation.

New use of a known technique. The functions Bits(·)
and Power2(·) are originated in [22], [23] as part of the
dimension switching technique. Historically, the paper [22]
only considered dimension-reduction, namely n2 < n1 in
our notation, for efficiency issues in FHE. Then subsequent
paper [23], while notified that the technique works for
arbitrary dimensions n1 and n2, only made use of the case
n2 < n1 as in [22]. In this paper, we use n1 = n2 for key
rotation and n1 < n2 for security update in homomorphic
encryption. Therefore, the specific usages of the dimension
switching technique for key rotation and security update are
new to this work, as summarized in Table 1.

Below we show the properties of the algorithms in
Figure 2.
Theorem 2 (Pseudorandom update key). Given pp, pk1,

pk2, and even secret sk1, the update key ukn1!n2
gen-

erated as in Figure 2 is computationally random under
the LWE(n2, s2, q) assumption.

Figure 1: Algorithms for key rotation and security
update.

• DecM(sk, cmul): Let sk = S ∈ Zn×lq and Il be the iden-
tity matrix of size l. Compute

m =

[
S
Il

]T
(cmul)

[
S
Il

]
∈ Zl×lq .

Return m ∈ Zl×lp .

The additively homomorphic part of the above scheme has
been used in [3] for privacy-preserving logistic regression.
For applications in privacy-preserving linear regression and
secure biometric-authentication, see [2].

Key rotation and security update part (Figure 1).
For these purposes, we add two additional algorithms UKGen
(generating the update key) and Update (doing the key ro-
tation, or security update over ciphertexts), according to
Definition 2.

The algorithm UKGen takes two key pairs (pk1, sk1) and
(pk2, sk2) and returns a key ukn1→n2 . The algorithm Update
uses that ukn1→n2 to turn a ciphertext c under pk1 to a
ciphertext c′ decryptable by sk2. The details are depicted in
Figure 1 in which we need the functions Power2(·) and Bits(·)
explained as follows. Let v ∈ Znq and κ = dlog2 qe, then there

are bit vectors vi ∈ {0, 1}n such that v =
∑κ−1
i=0 2ivi. Define

Bits(v) = [v0| · · · |vκ−1] ∈ {0, 1}1×nκ.

Let W = [W1| · · · |Wl] ∈ Zn×lq where Wi are columns. Then

Power2(W ) =


W1 · · · Wl

2W1 · · · 2Wl

...
...

2κ−1W1 · · · 2κ−1Wl

 ∈ Znκ×lq .

It is easy to check that

Bits(v)Power2(W ) = vW ∈ Z1×l
q .

Intuitively, Bits(·) is used in Update to limit the noise in-
crease, while Power2(·) is put in UKGen to ensure correctness
of updated ciphertexts using above equation. The functions
Bits(·) and Power2(·) are originated in [9, 11] as part of the
dimension switching technique.
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4.1 Correctness and homomorphic properties
We informally check the correctness and homomorphisms

of our KR-SU-HE scheme, and then formally establish a
theorem for choosing parameters.

Correctness of directly-formed ciphertexts. We check
that directly-formed ciphertexts can be decrypted correctly.
Indeed, in the decryption Dec algorithm,

c1S + c2 = (e1A+ pe2)S + e1P + pe3 +m

= e1(AS + P ) + pe2S + pe3 +m

= p(e1R+ e2S + e3) +m ∈ Z1×l
q (1)

will yield correct m in decryption if the noise p(e1R+ e2S+
e3) is small enough.

Correctness of updated ciphertexts. We have c′ =

E0 + F ∈ Z1×(n2+l)
q . As E0 is an encryption under pk2 of

length l vector (0, . . . , 0), its decryption under sk2 gives the
zero vector. The decryption of F under sk2 = S2 is

m = Bits(c1)XS2 + Bits(c1)Y + c2

= Bits(c1)(pE + Power2(S1)) + c2

= pBits(c1)E + c1S1 + c2 ∈ Z1×l
q (2)

which is equal to the decryption of c = (c1, c2) under sk1 =
S1 as long as the added noise Bits(c1)E is small, which
holds with high probability as matrix E containing small,
Gaussian-distributed elements.

Homomorphic property. Directly, our KR-SU-HE scheme
can evaluate the following formulas on ciphertexts

Nadd∑
i=1

CTi ∈ Z1×(n+l)
q (3)

Nadd∑
i=1

CTT
i · CT ′i ∈ Z(n+l)×(n+l)

q (4)

in which (3) is a special case of (4) and yet the noise added
is smaller. The decryption of (3) and (4) uses the algorithms
DecA and DecM respectively, yielding

Nadd∑
i=1

mi ∈ Z1×l
p and

Nadd∑
i=1

mT
i ·m′i ∈ Zl×lp

where mi and m′i are the plaintext vectors in CTi and CT ′i .

More multiplications. To get several ciphertext multi-
plications instead of one as above, one can take l = 1 in
our scheme and uses known techniques of noise reduction as
in [8, 9, 14].

Homomorphisms held even after key rotation or se-
curity update. Succinctly, formulas (3) and (4) hold even
if CTi, CT

′
i (1 ≤ i ≤ Nadd) are altogether encrypted under

the same public key, regardless of whether they are directly
formed by the Enc algorithm or are indirectly transformed
by Update (Figure 1) from old ciphertexts. Intuitively, this
is because (i) the zero encryption E0 part in updated cipher-
texts does not interfere with homomorphisms, and (ii) the
F part can be correctly decrypted as in (2).

More precisely, consider following cases, where“old”stands
for a ciphertext under pk1 and “new” for a ciphertext under
pk2, and Update(old) for an updated ciphertext from pk1 to
pk2:

• (old + old) or (new + new): this should be easily seen, as

vector addition of two ciphertexts in the same form e1[A|P ]+
p[e2|e3]+[0n|m] and e′1[A|P ]+p[e′2|e′3]+[0n|m′] under identi-
cal public key [A|P ] (either old or new) gives us a ciphertext
whose decryption will yield (m+m′) mod p.

• Update(old) + new: let cud and cnw be the updated-from-
old and under-new public-key ciphertexts correspondingly.
The decryption under the new secret key S2 is

Dec(S2, cud + cnw) = Dec(S2, cud) + Dec(S2, cnw) (mod p)

as the noise increases linearly when doing cud + cnw. The
decryption Dec(S2, cud) works as in (2) and Dec(S2, cnw) as
in (1), yielding corresponding messages mud and mnw as
expected.

Like the above, one can do the multiplication of (old ×
old), (new × new), and (Update(old) × new) where × is the
outer product of vectors, justifying that formulas (3) and
(4) hold even after key rotation or security update.

We end this subsection by the following theorem on how
to set parameters for our scheme.

Theorem 1 (Parameters for correctness). Let pa-
rameters p, q, s be as in our KR-SU-HE scheme, and n1, . . . ,
nh (h ≥ 1) are the dimensions in key rotation or security
updates, and Nadd the number of additions over multiplied
ciphertexts as in (4) where all ciphertexts are with the same
ni, then the correctness of (4) holds with overwhelming prob-
ability if

q = Nadd ·O
(
p2s4

h∑
i=1

ni + p2s2(log2 q)

h∑
i=2

ni
)

in which the hidden constant in the O(·) is small.

To prove Theorem 1, we will use following lemmas, whose
proofs can be derived from [5,6]. Below 〈·, ·〉 stands for inner
product. Writing ||Zn(0,s)|| is a short hand for taking a vector
from the discrete Gaussian distribution of deviation s and
computing its Euclidean norm.

Lemma 1. Let c ≥ 1 and C = c · exp( 1−c2
2

). Then for
any real s > 0 and any integer n ≥ 1, we have

Pr

[
||Zn(0,s)|| ≥

c · s
√
n√

2π

]
≤ Cn.

Lemma 2. For any real s > 0 and T > 0, and any x ∈
Rn, we have

Pr
[
||〈x,Zn(0,s)〉|| ≥ Ts||x||

]
< 2 exp(−πT 2).

Proof (of Theorem 1). For now suppose h = 2, we
check the decryption by secret key S2 in dimension n2 of
updated ciphertexts. Using the notations as in Figure 1,
let E0 = [E1|E2] and F = [F1|F2] for E1, F1 ∈ Z1×n2

q , and

E2, F2 ∈ Z1×l
q , so c′ = E0 + F = [E1 + F1|E2 + F2], and the
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decryption of c′ by S2 becomes

(E1 + F1)S2 + E2 + F2

=
(
f1A2 + pf2 + Bits(c1)X

)
S2 + f1P2 + pf3

+ Bits(c1)Y + c2

= f1A2S2 + pf2S2 + Bits(c1)XS2 + f1(pR2 −A2S2)

+ pf3 + Bits(c1)Y + c2

= pf2S2 + Bits(c1)XS2 + pf1R2 + pf3

+ Bits(c1)
(
−XS2 + pE + Power2(S1)

)
+ c2

= pf2S2 + pf1R2 + pf3

+ pBits(c1)E + Bits(c1)Power2(S1) + c2

= p(f2S2 + f1R2 + f3 + Bits(c1)E)︸ ︷︷ ︸
noise incurred after one Update

+c1S1 + c2 ∈ Z1×l
q .

In the worst case, Bits(c1) contains all 1’s, so that the
noise added after one update is

p(f1R2 + f2S2 + f3 + 11×n1κ · E).

Generally, the noise added after h updates corresponding
to key dimension ni (2 ≤ i ≤ h) is a sum of form

p

h∑
i=2

(
f
(i)
1 R

(i)
2 + f

(i)
2 S

(i)
2 + f

(i)
3 + 11×niκ · E

(i)
)
.

Each component in Zq of the total noise in Z1×l
q , namely

including the noise in the original ciphertext, can be written
as the inner product of two vectors of form

e = (f
(2)
1 , f

(2)
2 , f

(2)
3 , . . . , f

(h)
1 , f

(h)
2 , f

(h)
3 ,

e(2), . . . , e(h), e1, e2, e3)

x = (r
(2)
2 , s

(2)
2 ,0101×l, . . . , r

(h)
2 , s

(h)
2 ,0101×l,

11×niκ︸ ︷︷ ︸
2≤i≤h

, r, r′,0101×l)

where, for all 2 ≤ i ≤ h,

• Vectors f
(i)
1 , f

(i)
2

g← Z1×ni
(0,s) , and f

(i)
3

g← Z1×l
(0,s).

• Vectors e(i)
g← Z1×niκ

(0,s) represents one column in matrix

E(i).

• Vectors e1
g← Z1×n1

(0,s) , e2
g← Z1×n1

(0,s) , and e3
g← Z1×l

(0,s) are

the noises in the original ciphertext.

• Vectors r
(i)
2 , s

(i)
2

g← Z1×ni
(0,s) , and 0101×l stands for a vec-

tor of length l with all 0’s except one 1; 11×niκ for a

vector of length niκ with all 1’s. Vectors r, r′
g← Z1×n1

(0,s)

represent corresponding columns in matrices R,S.

Here we use the same deviation s for all dimensions to
ease the computation. We have

e ∈ Z
1×(

∑h
i=1(2ni+l)+

∑h
i=2 niκ)

(0,s)

||x|| ≤ ||(r(2)2 , s
(2)
2 , . . . , r

(h)
2 , s

(h)
2 , r, r′)||+

√√√√κ

h∑
i=2

ni + h

where (r
(2)
2 , s

(2)
2 , . . . , r

(h)
2 , s

(h)
2 , r, r′) ∈ Z

1×(2
∑h

i=1 ni)
(0,s) . Ap-

plying Lemma 1 for vector of length 2
∑h
i=1 ni, with high

probability of

1− C2
∑h

i=1 ni(≥ 1− 2−40 for all choices of parameters)

we have

||x|| ≤
c · s

√
2
∑h
i=1 ni√

2π
+

√√√√κ

h∑
i=2

ni + h.

We now use Lemma 2 with vectors x and e. Let ρ be the er-
ror per message symbol in decryption, we set 2 exp(−πT 2) =

ρ, so T =
√

ln(2/ρ)/
√
π. The bound on the noise becomes

pTs||x||, which is not greater than

ps
√

ln(2/ρ)√
π

c · s
√

2
∑h
i=1 ni√

2π
+

√√√√κ

h∑
i=2

ni + h


def
= B(ρ, h, s, n1, . . . , nh, p, q). (5)

No update (h = 1): (5) becomes

ps
√

ln(2/ρ)√
π

(
c · s
√

2n1√
2π

)
=
pcs2

√
ln(2/ρ) · n1

π
.

which is the upper-bound of noise in each original ciphertext.
If original ciphertexts are multiplied and added as in (4), the
corresponding noise bound is set below q/2 for correctness

Naddn1p
2c2s4 ln(2/ρ)

π2
≤ q

2
. (6)

With update (h ≥ 2): Now we consider (5) with h ≥ 2.

As in (6) we set

Nadd ·B(ρ, h, s, n1, . . . , nh, p, q)
2 ≤ q

2
(7)

becomes the condition for correctness stated in the state-
ment of the theorem, ending the proof.

4.2 Security analyses
We first provide the intuition and then continue with for-

mal proofs.

Security intuition on updated ciphertexts. Suppose
keys and ciphertexts in dimension n1 is considered insecure,
so that the ciphertexts must be transformed into secure di-
mension n2 > n1. In other words, consider the worst case in
which an adversary A owns the secret sk1 in dimension n1,
referring to Figure 1, we need to show that the transformed
ciphertext,

c′ = E0 + F ∈ Z1×(n2+l)
q

remains secure. That holds true since the encryption using
pk2 of zero

E0 = f1[A2|P2] + p[f2|f3] ∈ Z1×(n2+l)
q

is pseudo-random under the LWE assumption in dimen-
sion n2 regardless of F . Certainly, we need to mention
that A additionally has access to public matrices A2 and
P2 = pR2−A2S2 and even the update key ukn1→n2 contain-
ing matrices (X,−XS2 + pE). These pieces of information
can be arranged in matrix form as[

A2

X

]
, p

[
R2

E

]
−
[
A2

X

]
S2
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which is also pseudo-random under LWE assumption in di-
mension n2.

Formally, the security of our proposed scheme is ensured
by the following theorems.

Theorem 2 (d-CPA security). Our scheme is d-CPA
secure under the decision LWE assumption in dimension nd
for all d ≥ 1. In particular, for any poly-time adversary A
against the proposed scheme, there is a poly-time D against
LWE satisfying

Advd−cpa
A (λ) ≤ (l + 1) ·Adv

LWE(nd,sd,q)
D (λ).

Proof. We proceed in games as follows. Let Game0

be the d-CPA game in Definition 3. The public key at di-
mension nd is (Ad, Pd = pRd − AdSd) and the update key
from dimension ni (i < d) to dimension nd is ukni→nd =(
Xi,−XiSd + pEi + Power2(Si)

)
, where Xi

$← Zniκ×nd
q and

Gaussian noises Ei
g← Zniκ×l

q are freshly chosen by the chal-
lenger for each update key.

Game1: this game is identical to Game0 except that public
Pd is taken randomly, and above update keys are computed
and returned by the challenger as ukni→nd =

(
Xi, Yi

)
, for

random matrices Xi
$← Zniκ×nd

q and Yi
$← Zniκ×l

q .
The difference between Game0 and Game1 are in turning

the matrices (Ad, Pd = pRd−AdSd) into random, and tuples
of form (Xi,−XiSd + pEi +Power2(Si)) into random tuples
(Xi, Yi) where indexes i correspond to update key queries.
In other words, the second term ST in the following is turned
into a random matrix

FT = −


Ad
...
Xi
...


i

 ,ST = FT · Sd + p


Rd
...
Ei
...


i

 ,
with secret Sd of dimension nd. To be exact with the LWE
assumption, we need to get rid of the p multiplication in ST.
Here we use the condition gcd(p, q) = 1 so that p−1 exists
in Zq. Consider the pair (p−1FT, p−1ST) where operations
are over Zq. Since FT is random , so is p−1FT. Further-
more, p−1ST is of form [p−1FT×secret+noise] of the LWE
assumption. Therefore the pair (p−1FT, p−1ST) is random
under the LWE assumption, so is the pair (FT,ST) again
due to gcd(p, q) = 1.

Thus both games are indistinguishable to A under the
LWE assumption.

Game2: this game is identical to Game1 except that the
challenge ciphertext is changed to random. Specifically,

C∗d = Update(uk∗nd−1→nd
, C∗d−1, Ad, Pd︸ ︷︷ ︸

pkd

)

= f1[Ad|Pd] + p[f2|f3] + F ∈ Z1×(nd+l)
q ,

where f1, f2, f3 are Gaussian noises chosen by the challenger,
is now computed as

C∗d = Rd + F

where Rd
$← Z1×(nd+l)

q . The change is still indistinguishable

to A thanks to the LWE assumption with secret f1 ∈ Z1×nd
s .

Since Rd is random, so is C∗d . Therefore, in this game,
all information A gets from its queries is random and hence
useless in guessing the hidden bit b. Thus in this game
Pr[b′ = b] = 1

2
.

The term l + 1 in the reduction comes from applying
LWE(nd, sd, q) over the l columns of Sd in Game1, and
another one time in Game2, ending the proof.

Theorem 3 (CPA security). Our scheme is CPA se-
cure under the decision LWE assumption. In particular,
for any poly-time adversary A against the proposed scheme,
there is a poly-time D against LWE satisfying

Advcpa
A (λ) ≤ (l + 1) ·Adv

LWE(nd,sd,q)
D (λ).

Proof. The proof is almost identical to that of Theorem
2. The difference is in Game2 where the challenge cipher-
text

C∗ = Enc(pkd,mb) = e∗1[Ad|Pd] + p[e∗2|e∗3] + [01×nd |mb]

is replaced by a random tuple, which is indistinguishable to
the adversary thanks to the LWE(nd, sd, q) assumption with
secret e∗1.

4.3 Testing implementation
For parameter selection related to the LWE assumption,

we rely on attacks on LWE in [1,16,17] and [13]. In particu-
lar, our choices of parameters are consistent with the newest
one in [13].

For generating discrete Gaussian noises, we employ the
Knuth-Yao algorithm [15]. The noise generation only occu-
pies a negligible time in encryption. For example, when s =
10, our implementation can generate more than 4 ·104 Gaus-
sian samples in one millisecond using only 1.65 megabytes
to store a binary tree.

Table 2: Our timings when q = 2114, p = 230 + 1.
bit-sec KeyGen Enc Dec Add Mul AddM DecM

80 1428 63.2 0.92 0.003 35.1 29.3 1313
128 2513 94.7 1.22 0.004 60.8 50.1 2296
256 7249 313 2.05 0.010 164 136 6643

(All times are in milliseconds, averaged over 1000 executions.)

bit-sec → bit-sec UKGen Update

Key 80→ 80 165.6 (s) 1.1 (s)
rotation 128→ 128 291.4 (s) 1.9 (s)

256→ 256 846.6 (s) 5.3 (s)
Security 80→ 128 238.2 (s) 1.5 (s)
update 128→ 256 519.8 (s) 3.3 (s)

(In both tables, times are averaged over 1 thread of a Xeon E5-

2660 v3, 2.60GHz machine.)

Taking q = 2114, p = 230 + 1, s = 8.0, l = 64, we need
n = 2661, 3530, 5847 respectively for estimated 80-, 128-,
256-bit securities. The message length l = 64 is sufficient to
handle real numbers of 64-bit precision. The running times
are reported in Table 2. As seen in the table, generating
an update key requires a few minutes, while updating a ci-
phertext needs a few seconds. The update task can be fully
parallelized on the cloud server.
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5. CONCLUSION
We conceptually propose the notion of key-rotatable and

security-updatable homomorphic encryption, and build a
concrete scheme. Our scheme is proved secure under the
LWE assumption, and is showed efficient via implementa-
tion. It can be used in secure cloud computing to accom-
plish the vital task of key rotation and security update when
necessary.
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